Thus, while the blood pH values are slightly elevated for both Control and Experimental groups, the significant change in blood pH demonstrated by the Experimental group is likely a real effect of consuming AK water. Influence on Hydration Status Consumption of AK water following a
dehydrating bout of cycling exercise has previously been shown to rehydrate cyclists faster and more completely than the consumption of placebo bottled water (i.e., Aquafina) [8]. Following the consumption of AK water, the cyclists demonstrated less total urine output, their urine was more concentrated (higher specific gravity), and total blood protein concentration was lower, all of which are expected observations for improved hydration status [8]. Even though the present study was performed under free-living conditions, the Experimental group demonstrated an increased urine concentration (osmolality; Table 7), a decreased total urine output Navitoclax chemical structure (Figure 1), as well as a decreased blood osmolality (Figure 2) by the end of the treatment period. These changes suggest that while SRWC was relatively stabile across measurement periods (Table 4), a relatively greater proportion of the AK water consumed during the treatment phase
was being retained within selleck products the cardiovascular system. Indeed, the cyclist hydration study described above [8] reported that water retention at the end of a 3-hour recovery period was 79.2 ± 3.9% when subjects drank AK water versus 62.5 ± 5.4% when drinking the placebo (P < 0.05). Thus, the present study has shown that the habitual consumption of mineralized Coproporphyrinogen III oxidase bottled water can actually improve indicators of hydration status over non-mineralized bottled water under free-living conditions that is consistent with lab-controlled study results. Similar to what was described for changes in acid-base balance above, however, the onset of these observations did not begin with
the immediate consumption of AK water. In fact, changes in total urine output, urine osmolality, and blood osmolality did not appear to begin changing until the end of the first week of consuming AK water, with significant changes always occurring at the end of the second week of consumption. Unfortunately, the present study was designed to observe possible changes in acid-base balance and hydration status rather than decipher mechanistic causes. However, it is possible to speculate on some contributing causes given that the AK water manufacturer lists only three major naturally occurring minerals on the bottle label (Calcium at 2.8 mg/L, Silica at 16.0 mg/L, and Potassium at 23.0 mg/L) as well as the proprietary blend of mineral-based alkalizing supplement called Alka-PlexLiquid™. According to the manufacturer, Alka-PlexLiquid™ is a freely dissolvable form of a patented blend of mineral-based alkalizing ingredients called Alka-Plex™ granules.