The study by Gu et al revealed 739

M tuberculosis H37Rv

The study by Gu et al. revealed 739

M. tuberculosis H37Rv proteins including 85 membrane proteins (11.5%), while Xiong et al. identified 349 proteins, of which 100 were predicted membrane proteins (28.7%). The low percentage of integral plasma membrane proteins among the proteins identified in these studies was probably based in the membrane enrichment methods. We reduced the soluble protein contamination by phase separation of whole bacterial sonicates, and also applied state-of-the-art mass spectrometry analysis for identification of peptides. More than 50% of all predicted lipoproteins in the genome were found. These are proteins translocated across the cell membrane and retained in the cell envelope by post-translational lipid modification. They are functionally diverse, and are suggested to be involved in host-pathogen www.selleckchem.com/products/cb-839.html interactions [27,

28]. They are also of interest with respect to development of serodiagnostic check details tests for tuberculosis due to their strong immunogenicity [29, 30]. We also found 37% of all predicted OMPs [19], which is an essential group of proteins involved in import of nutrients, secretion processes and host-pathogen interactions in gram-negative bacteria [31], and this is also likely to be of great importance in mycobacteria because it is now firmly established that they have a true outer membrane [5–7]. Even though a considerable number of observed proteins were predicted as integral membrane- or membrane-associated proteins, a substantial proportion of the detected proteins lacked a predicted retention region. For those proteins we measured the GRAVY score which express the total hydrophobicity of a protein as an indicator for membrane association. However, this is just a measure of Methane monooxygenase increased probability for membrane association based

on the fact that most integral membrane proteins have a positive GRAVY value. If a protein has a positive value, even though it lacks a retention signal, it is probably associated with the membrane. On the other hand, some of the hydrophilic proteins with a negative GRAVY value might still be retained in the membrane through formation of protein complexes with membrane-anchored proteins [21–23]. Several proteins in this group are encoded in operons of well known integral enzyme complexes [14]. Using state-of-the-art proteomic instrumentation and techniques, subtle details could be revealed at the individual protein level, such as experimental identification of signal peptide cleavage sites of predicted secreted proteins [32], or confirmation of the start codon, or identification of peptides from regions predicted to be non-coding thus indicating a more up-stream start codon [33, 34], or even detection of novel genes [35].

Comments are closed.