ACS Nano 2013, 7:3246–3252.CrossRef 17. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR: Nanoscale thermal transport. J Appl Phys 2003, 93:793–818.CrossRef 18. Wu BJ, Kuo LH, Depuydt JM, Haugen MLN4924 solubility dmso GM, Haase MA, Salamancariba L: Growth and characterization of II–VI blue light-emitting diodes using short period superlattices. Appl Phys Lett 1996, 68:379–381.CrossRef 19. Rees P, Helfernan JF, Logue FP, Donegan JF, Jordan C, Hegarty J, Hiei F, Ishibashi A: High temperature gain measurements in optically pumped ZnCdSe-ZnSe quantum wells. IEE Proc Optoelectron 1996,
143:110–112.CrossRef 20. Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 2009, 102:236804. 4CrossRef 21. Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 2009, 80:155453.CrossRef 22. Liu CC, Feng W, Yao Y: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett 2011,
107:076802–076804.CrossRef 23. Yang B, Liu JL, Wang KL, Chen G: Simultaneous measurements of Seebeck coefficient and thermal conductivity across superlattice. Appl Phys Lett 2002, 80:1758–1760.CrossRef 24. Liu CK, Yu CK, Chien HC, Kuo SL, Hsu CY, p38 MAPK activation Dai MJ, Luo GL, Depsipeptide cost Huang SC, Huang MJ: Thermal conductivity of Si/SiGe superlattice films. J Appl Phys 2008, 104:114301–114308.CrossRef 25. Huxtable ST, Abramson AR, Tien CL, Majumdar
A, LaBounty C, Fan X, Zeng G, Bowers JE, Shakouri A, Croke ET: Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl Phys Lett 2002, 80:1737–1739.CrossRef 26. Laref A, Belgoumene B, Aourag H, Maachou M, Tadjer A: Electronic structure and interfacial properties of ZnSe/Si, ZnSe/Ge, and ZnSe/SiGe superlattices. Superlattice Microst 2005, 37:127–137.CrossRef 27. Kresse G, Joubert D: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999, 59:1758–1775.CrossRef 28. Kresse G, Furthmüller J: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996, 6:15–50.CrossRef 29. Kresse G, Furthmüller J: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996, 54:11169–11186.CrossRef 30. Perdew JP, Burke K, Ernzerhof M: Generalized gradient approximation made simple. Phys Rev Lett 1996, 77:3865–3868.CrossRef 31. Perdew JP, Levy M: Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Phys Rev Lett 1983, 51:1884–1887.CrossRef 32. Sham LJ, Schluter M: Density-functional theory of the energy Gap. Phys Rev Lett 1983, 51:1888–1891.CrossRef 33.