Computed tomography (CT) is the mainstay of TBI imaging in the ac

Computed tomography (CT) is the mainstay of TBI imaging in the acute setting, but magnetic resonance tomography (MRI) has better diagnostic sensitivity for nonhemorrhagic contusions and shear-strain injuries. Both CT

and MRI can be used to prognosticate clinical outcome, and there is particular interest in advanced applications of both techniques that may greatly improve Angiogenesis inhibitor the sensitivity of conventional CT and MRI for both the diagnosis and prognosis of TBI.”
“Imaging techniques, in particular magnetic resonance imaging (MRI), play an important role in the diagnosis and management of multiple sclerosis (MS) and related demyelinating diseases. Findings on MRI studies of the brain and spinal cord are critical for MS diagnosis, are used to monitor treatment response and may aid in predicting disease progression in individual patients. In addition, results of imaging studies serve as essential biomarkers in clinical trials of putative MS therapies and have led to important insights into disease pathophysiology. Although they are useful tools and provide in vivo measures of disease-related activity, there are some important limitations of MRI findings in MS, including the non-specific nature of detectable white

matter changes, the poor correlation with clinical disability, the limited sensitivity and ability of standard measures of gadolinium enhancing lesions and T2 lesions to predict future clinical course, and the lack of validated biomarkers of long term outcomes. Advancements VX-809 molecular weight that hold promise for the future include new techniques that are sensitive to diffuse changes, the increased use of higher field scanners, measures that capture disease related changes in gray matter, and the use of combined structural and functional imaging approaches to assess the complex and evolving disease process that occurs during the course of MS.”
“Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive degeneration

of upper motor Tryptophan synthase neurons (UMN) and lower motor neurons (LMN). While LMN dysfunction can be confirmed by electromyography (EMG) and muscle biopsy, UMN involvement is more difficult to detect, particularly in the early phase. Objective and sensitive measures of UMN dysfunction are needed for early diagnosis and monitoring of disease progression and therapeutic efficacy. Advanced magnetic resonance imaging (MRI) techniques, such as diffusion, perfusion, magnetization transfer imaging, functional MRI, and MR spectroscopy, provide insight into the pathophysiological processes of ALS and may have a role in the identification and monitoring of UMN pathology. This article provides an overview of these neuroimaging techniques and their potential roles in ALS.

Comments are closed.