Deletion mutagenesis and coprecipitation assays mapped the vIL-6-binding domain (vBD) of VKORC1v2 to TM-proximal residues 31 to 39. However, while sufficient to confer vIL-6 binding to a heterologous protein, vBD was unable to induce vIL-6 secretion when fused to (secreted) hIL-6, suggesting a VKORC1v2-independent mechanism of vIL-6 ER retention. In functional assays, overexpression of ER-directed vBD led to suppression of
PEL cell proliferation and viability, effects also mediated by VKORC1v2 depletion and, as reported previously, by vIL-6 suppression. The growth-inhibitory and proapoptotic effects of VKORC1v2 depletion could be rescued by transduced wild-type VKORC1v2 but not by a vIL-6-refractory vBD-altered variant, AG-014699 datasheet indicating the functional relevance of the vIL-6-VKORC1v2 interaction. Notably, gp130 signaling was unaffected
by VKORC1v2 or vBD overexpression or by VKORC1v2 depletion, suggesting an alternative pathway of vIL-6 activity via VKORC1v2. Combined, our data identify a novel and functionally significant interaction BIBF 1120 purchase partner of vIL-6 that could potentially be targeted for therapeutic benefit.”
“The neuropeptide pituitary adenylyl cyclase-activating peptide (PACAP) and its receptors (PAC1 and VPAC2) are expressed in the ventral tegmental area and nucleus accumbens, raising the possibility that PACAP could be a potential modulator of the mesolimbic dopaminergic system.
The present study was designed to determine if PACAP 5-carboxymethyl-2-hydroxymuconate Delta-isomerase plays
a role in acute motor stimulatory and rewarding actions of morphine.
The effect of intracerebroventricular PACAP administration (0, 0.03, 0.3, 1.0, or 3.0 mu g/3 mu L) was studied on basal motor activity as well as on morphine (5 mg/kg)-stimulated motor activity. Motor stimulation and conditioned place preference (CPP) induced by morphine (5 or 10 mg/kg) were also determined in mice lacking PACAP and their wild-type controls.
Intracerebroventricular PACAP dose-dependently suppressed basal motor activity and PACAP-deficient mice exhibited higher basal motor activity than control mice, providing evidence that the action of endogenous PACAP on basal motor activity is inhibitory. Paradoxically, low doses of PACAP which did not alter basal motor activity were found to enhance the motor stimulatory action of morphine. Furthermore, morphine-induced motor stimulation was blunted in PACAP-deficient mice. Additionally, morphine-induced CPP following a single, but not repeated, alternate-day saline/morphine (10 mg/kg) conditioning was blunted in PACAP-deficient mice compared to their wild-type littermates/controls.
The present results suggest that endogenous PACAP, at low doses, positively modulates the acute motor stimulatory and rewarding actions of morphine.