Methods of homology model building and structural analysis of sin

Methods of homology model building and structural analysis of single-site mutated MetA. (DOC 49 KB) Additional file 9: Table S6: Primer sequences used for the find more construction of single-site STA-9090 cell line MetA mutants. Table S7 Primer sequences employed for the construction of protease expression plasmids. (DOC 28 KB) References 1. Figge RM: Methionine biosynthesis in Escherichia coli and corynebacterium glutamicum . In Amino acid biosynthesis – pathways, regulation and metabolic engineering. Edited by: Wendisch VF. Berlin, Heidelberg: Springer; 2006:164–189. 2. Hondorp ER, Matthews RG, et al.: Methionine. In EcoSal—escherichia

coli and salmonella: cellular and molecular biology. Chapter 3.6.1.7. Edited by: Böck A. Selleckchem Entinostat Washington, DC: ASM Press; 2006. http://​www.​ecosal.​org 3. Born TL, Blanchard JS: Enzyme-catalyzed

acylation of homoserine: Mechanistic characterization of the Escherichia coli metA -encoded homoserine transsuccinylase. Biochemistry 1999, 38:14416–14423.PubMedCrossRef 4. Flavin M, Slaughter C: Enzymatic synthesis of homocysteine or methionine directly from O-succinylhomoserine. Biochim Biophys Acta 1967, 132:400–405.PubMedCrossRef 5. Flavin M: Methionine biosynthesis. In Metabolism of sulfur compounds. Metabolic pathways, volume 7. Edited by: Greenberg DM. New York: Academic; 1975:457–503. 6. Biran D, Gur E, Gollan L, Ron EZ: Control of methionine biosynthesis in Escherichia coli by proteolysis. Mol Microbiol 2000, 37:1436–1443.PubMedCrossRef 7. Price-Carter M, Fazzio TG, Vallbona EI, Roth JR: Polyphosphate kinase protects Salmonella enterica from weak organic acid stress. J Bacteriol 2005, 187:3088–3099.PubMedCrossRef 8. Ron EZ, Davis BD: Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J Bacteriol 1971, 107:391–396.PubMed 9. Gur E, Biran else D, Gazit E, Ron EZ: In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperature.

Mol Microbiol 2002, 46:1391–1397.PubMedCrossRef 10. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang H-C, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU: Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli . Cell 2005, 122:209–220.PubMedCrossRef 11. Mordukhova EA, Lee H-S, Pan J-G: Improved thermostability and acetic acid tolerance of Escherichia coli via directed evolution of homoserine o-succinyltransferase. Appl Environ Microbiol 2008, 74:7660–7668.PubMedCrossRef 12. Lehmann M, Wyss M: Engineering proteins for thermostability: the use of sequence alignment versus rational design and directed evolution. Curr Opin Biotechnol 2001, 12:371–375.PubMedCrossRef 13. Capriotti E, Fariselli P, Casadio R: I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 2005, 33:306–310.CrossRef 14.

Comments are closed.