We examined dopamine D1 receptor (D1DR) binding in the cerebral c

We examined dopamine D1 receptor (D1DR) binding in the cerebral cortex and striatum of 12 adolescents (mean age 13.5 +/- 1.8 years) and 18 young adults (25 +/- 2.3 years) using positron emission tomography

(PET) and radioligand [(11)C]SCH23390. Over the age span of 10-30 years [(11)C]SCH23390 binding (binding potential, BP) declined in all brain regions. The rate of BP decline was age-segment and brain region dependent. Most pronounced decline in BP was observed in the cortical regions during adolescence (mean BP in adults lower by 14-26% as compared to adolescents, P<0.0001). Significantly slower rate of decline in BP was observed in two cortical regions (orbitofrontal and posterior cingulate cortices) and striatal regions. The present PET-study provides new evidence on the development https://www.selleckchem.com/products/pifithrin-alpha.html of D1DR in humans in vivo which is of critical importance for understanding of the biology of neurodevelopmental disorders. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.”
“Cholestatic liver injury following extra- or intrahepatic bile duct obstruction causes nonparenchymal cell proliferation and matrix deposition leading to end-stage liver disease and cirrhosis. In cholestatic conditions, nitric oxide (NO) is mainly produced by a hepatocyte-inducible NO synthase SCH772984 in vivo (iNOS) as a result of enhanced inflow of endotoxins

to the liver and also by accumulation of bile salts in hepatocytes and subsequent hepatocellular injury. This study was aimed to investigate the role of NO and S-nitrosothiol (SNO) homeostasis in the development of hepatocellular injury during cholestasis induced by bile duct ligation (BDL) in rats. Male Wistar rats (200-250 g) were divided into four groups (n – 10 each), including sham-operated (SO), bile duct-ligated (BDL), tauroursodeoxycholic acid (TUDCA, 50 mg/kg) and S-methylisothiourea (SMT, 25 mg/kg) treated. old After 7 days, BDL rats showed elevated serum levels of gamma-glutamiltranspeptidase, aspartate aminotransferase, alanine aminotransferase, LDH,

and bilirubin, bile duct proliferation and fibrosis, compared with the SO group. TUDCA treatment did not significantly alter these parameters, but the iNOS inhibitor SMT ameliorated hepatocellular injury, as shown by lower levels of circulating hepatic enzymes and bilirubin, and a decreased grade of bile duct proliferation and fibrosis. Both TUDCA and SMT treatments reversed Mrp2 canalicular pump expression to control levels. However, only SMT treatment significantly lowered the increased levels of plasma NO and S-nitrosation (S-nitrosylation) of liver proteins in BDL rats. Moreover, BDL resulted in a reduction of the S-nitrosoglutathione reductase (GSNOR/Adh5) enzymatic activity and a downregulation of the GSNOR/Adh5 mRNA expression that was reverted by SMT, but not TUDCA, treatment.

Comments are closed.