1b); histopathological pancreas analysis revealed that the vaccines did not prevent insulitis either. As shown in Fig. 1c, BCG and BCG/DNAhsp65 reduced the percentage of intact islets (0 and 8%, respectively) in comparison to the STZ group (10%) and increased score 3 mononuclear infiltration (6 and 14%, respectively), also in comparison to the STZ group (2%). Despite the negative results of the vaccination protocols in the MLD–STZ model,
BCG alone and prime-boost BCG/DNAhps65 protected NOD mice against diabetes type 1 development. Seven-week-old NOD mice were immunized with BCG, and in the prime-boost group they also received a pVAXhsp65 dose 15 days later. Body weight and glycaemia selleck screening library were then measured until week 29. The weight variation from weeks 11–29 is shown in Fig. 2a. All the animals gained weight; however, the variation in BCG–NOD and BCG/DNAhsp65–NOD groups (20 and 21%, respectively) was significantly higher than in non-immunized NOD mice (13%). Weight gain was similar in the two immunized groups. The blood glucose variation during the experimental period can be observed in Fig. 2b. Blood glucose levels in the NOD group were always higher than 200 mg/dl from week 18 onwards.
Both BCG–NOD and BCG/DNAhsp65–NOD groups had glycaemia measurements below the diabetic threshold; however, they were even lower in mice immunized with the prime-boost. Therefore, the vaccines protected mice against click here diabetes and data for the disease incidence are shown in Fig. 2c. In the non-immunized group, mice started to become diabetic by week 15. BCG alone was able to delay diabetes onset until week 24 and prime-boost BCG followed by pVAXhsp65 protected mice completely until week 29. Figure 2d
shows the percentage of diabetic and non-diabetic mice per group, considering all animals. By week 29, Methocarbamol 78% of all diabetic mice were in the non-immunized NOD group while the remaining 22% were in the BCG–NOD group; there were no diabetic mice in the BCG/DNAhsp65–NOD group. Thus, when analysing the non-diabetic mice, only 17% of all animals were in the NOD group, 38% were in the BCG–NOD group and almost half of them (45%) were in the BCG/DNAhsp65–NOD group. Examples of each one of the inflammatory scores found in the pancreas islets are shown in Fig. 3a: (i) presents a score 0, intact islet; (ii) shows a score 1 of infiltration, characterized by peri-insulitis; (iii) is a moderate infiltration defined as score 2 and (iv) shows an accentuated level of inflammatory infiltration, i.e. a score 3. Based on this score system, Fig. 3b illustrates the diversity of insulitis scores found in NOD mice. Although the three groups exhibit a similar percentage of islets on score 0, there is a descending pattern from score 1 to score 3 in BCG–NOD and BCG/DNAhsp65–NOD groups and the opposite occurs in the non-immunized NOD group.